THE LEFSCHETZ NUMBER OF AN n-VALUED MULTIMAP

نویسنده

  • Robert F. Brown
چکیده

An n-valued multimap is a continuous multivalued function φ : X ⊸ Y such that φ(x) is an unordered subset of n points of Y for each x ∈ X. If X and Y are finite polyhedra, then φ induces a graded homomorphism of homology with rational coefficients. For φ : X ⊸ X the Lefschetz number L(φ) of φ is defined to be the Lefschetz number of the induced homomorphism. If L(φ) 6= 0, then every n-valued multimap homotopic to φ has a fixed point. If X is the circle, then the Lefschetz number of φ is related to the Nielsen number N(φ) of Schirmer as in the single-valued case, that is, N(φ) = |L(φ)|. Subject Classificaton 55M20; 55N25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FIXED POINTS OF n-VALUED MULTIMAPS OF THE CIRCLE

A multifunction φ : X ( Y is n-valued if φ(x) is an unordered subset of n points of Y for each x ∈ X. The (continuous) n-valued multimaps φ : S ( S are classified up to homotopy by an integer-valued degree. In the Nielsen fixed point theory of such multimaps, due to Schirmer, the Nielsen number N(φ) of an n-valued φ : S ( S of degree d equals |n − d| and φ is homotopic to an n-valued power map ...

متن کامل

NIELSEN NUMBERS OF n-VALUED FIBERMAPS

The Nielsen number for n-valued multimaps, defined by Schirmer, has been calculated only for the circle. A concept of n-valued fiber map on the total space of a fibration is introduced. A formula for the Nielsen numbers of n-valued fiber maps of fibrations over the circle reduces the calculation to the computation of Nielsen numbers of single-valued maps. If the fibration is orientable, the pro...

متن کامل

The Knaster–kuratowski–mazurkiewicz Theorem and Almost Fixed Points

From the KKM theorem for the “closed” and “open” valued cases, we deduce a generalization of the Alexandroff–Pasynkoff theorem, existence theorems for almost fixed points of lower semicontinuous multimaps, and a partial solution of the Ben-El-Mechaiekh conjecture.

متن کامل

Best Proximity Sets and Equilibrium Pairs for a Finite Family of Multimaps

We establish the existence of a best proximity pair for which the best proximity set is nonempty for a finite family of multimaps whose product is either an Ac -multimap or a multimap T : A → 2 such that both T and S ◦ T are closed and have the KKM property for each Kakutani multimap S : B → 2. As applications, we obtain existence theorems of equilibrium pairs for free n-person games as well as...

متن کامل

Lefschetz and Nielsen Coincidence Numbers on Nilmanifolds and Solvmanifolds

Suppose M 1 ; M 2 are compact, connected orientable manifolds of the same dimension. Then for all pairs of maps f,g:M 1 ?! M 2 , the Nielsen coincidence number N(f,g) and the Lefschetz coincidence number L(f,g) are measures of the number of coincidences of f and g: points x 2 M 1 with f(x) = g(x). A manifold is a nilmanifold (solvmanifold) if it is a homogeneous space of a nilpotent (solvable) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007